inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Gengbang Jin,^a Daniel M. Wells,^a Shane J. Crerar,^b Thomas C. Shehee,^a Arthur Mar^b and Thomas E. Albrecht-Schmitt^a*

^aDepartment of Chemistry, Auburn University, Alabama 36849, USA, and ^bDepartment of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Correspondence e-mail: albreth@auburn.edu

Key indicators

Single-crystal X-ray study T = 193 K Mean σ (S–S) = 0.003 Å R factor = 0.031 wR factor = 0.062 Data-to-parameter ratio = 26.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Eu₆Sb₆S₁₇ is isotypic with Sr₆Sb₆S₁₇ and can be regarded as consisting of two isolated $[Sb_3S_7]^{5-}$ anions and an S_3^{2-} polysulfide anion that are joined together by Eu^{2+} cations. There are six crystallographically unique Eu²⁺ cations bound by sulfide and polysulfide anions in seven-, eight- and ninecoordinate environments. Each of the $[Sb_3S_7]^{5-}$ anions consists of a trinuclear assembly of corner-sharing SbS₃ units. The $[Sb_3S_7]^{5-}$ anions are connected by long (3.1 Å) Sb-S interactions, forming one-dimensional ribbons running down the *a* axis and packed with opposing directions of polarity. The bent S_3^{2-} anions stack in columns parallel to the *a* axis, oriented in opposing directions with respect to one another. The overall structure is three-dimensional and has channels running down the *a* axis to house the stereochemically active lone pair of electrons on the Sb³⁺ centers. The presence of Eu²⁺ is supported by both magnetic measurements and bondvalence calculations.

Comment

Ternary rare-earth thioantimonites have been known for more than 20 years, since the initial report of the synthesis and crystal structure of Eu₃Sb₄S₉ (Lemoine et al., 1981). Despite this early success, the chemistry of thioantimonites is relatively undeveloped compared to that of thiophosphates (Evenson & Dorhout, 2001; Kanatzidis, 1997), and there is still a dearth of understanding in the structure-property relationships in this system. There has been renewed interest in ternary and quaternary chalcoantimonites and chalcobismuthites owing to their potential applications as thermoelectric materials. Based on structural analogies with Pn_2Q_3 phases (Pn = Sb and Bi, and Q = S, Se and Te), a series of ternary phases such as EuSb₂Q₄, EuSb₂Q₇, and EuBi₂Te₄ has been prepared and their transport properties measured (Godzhaev et al., 1978; Harman & Honig, 1967). EuBi₂Te₄ displays a thermoelectric figure of merit comparable to that of Bi₂Te₃ (Godzhaev et al., 1978; Harman & Honig, 1967). Eu₂BiS₄ is also of particular interest because it contains Eu^{II} and Eu^{III} in different coordination environments (Carré et al., 1985). Other ternary rareearth thioantimonites, such as Pr₈Sb₂S₁₅ (Guseinov et al., 1981), $Ln_3Sb_3S_{10}$ (Ln = La and Ce; Gao *et al.*, 1983) and $Ln_6Sb_8S_{21}$ (Ln = La and Ce; Gao *et al.*, 1984), have been characterized from single-crystal and powder X-ray diffraction data. $EuSb_4S_7$ has also been reported, but only its lattice constants are known (Aliev et al., 1978).

More recently, there has been attention paid to preparing quaternary rare-earth chalcoantimonites and chalcobismuthites, *e.g.* $K_2(Ln_{2-x})Sb_{4+x}Sb_4Se_{12}$ (Ln = La, Ce, Pr and Gd; Chen & Dorhout, 1997), $K_2Gd_2Sb_2Se_9$ (Choi *et al.*, 1999), $K_2La_2Sb_2S_9$ (Choi *et al.*, 1999), $Na_9Gd_5Sb_8S_{26}$ (Park & Kim, Received 10 May 2005 Accepted 20 May 2005 Online 28 May 2005

Figure 1

A view of the $[Sb_3S_7]^{5-}$ anions, which consist of trinuclear assemblies of corner-sharing SbS₃ units in Eu₆Sb₆S₁₇. 50% probability displacement ellipsoids are depicted.

2001), BaLaBi₂S₆ (Choi *et al.*, 1997), $ALn_{1\pm x}Bi_{4\pm x}S_8$ (A = K and Rb, and Ln = La, Ce, Pr and Nd; Iordanidis *et al.*, 1999) and Pb₂Eu₂Bi₆Se₁₃ (Chung *et al.*, 1998). These compounds possess complex structures, owing to the combination of the high coordination numbers found for lanthanides with discrete $[PnQ_3]^{3-}$, $[PnQ_{3+1}]^{3-}$ and $[PnQ_4]^{5-}$ anions and the extended networks of chalcoantimonites and chalcobismuthites. We report here the preparation and crystal structure of Eu₆Sb₆S₁₇, (Choi & Kanatzidis, 2000) and homeotypic with Pb₆Sb₆S₁₇ (with one of the axes halved) (Orlandi *et al.*, 2002), and which contains Eu^{II} and a polysulfide linkage.

Although three-dimensional in nature, the structure of Eu₆Sb₆S₁₇ can be treated as consisting of two isolated $[Sb_3S_7]^{5-}$ anions and an S_3^{2-} polysulfide anion that are joined together by Eu²⁺ cations. Analogous to Sr₆Sb₆S₁₇ (Choi & Kanatzidis, 2000), charge balance is attained in a straightforward manner by assuming the presence of six Eu²⁺ cations, six Sb^{3+} cations, 14 S^{2-} anions and one S_3^{2-} anion. The $[Sb_3S_7]^{5-}$ anion consists of a trinuclear assembly of corner-sharing SbS₃ units, as shown in Fig. 1. Other anions formed from the linking of SbS_n units include $[Sb_2S_4]^{2-}$ in BaSb₂S₄ (Cordier *et al.*, 1984) and $[Sb_2S_5]^{4-}$ in $Sr_2Sb_2S_5 \cdot 15H_2O$ (Schwidetzky, 1985). The Sb-S bond distances range from 2.416 (2) to 2.664 (3) Å. As in $Sr_6Sb_6S_{17}$ (Choi & Kanatzidis, 2000), the $[Sb_3S_7]^{5-1}$ anions are connected by long 3.105 (3) to 3.106 (3) Å Sb \cdots S interactions to form one-dimensional ribbons running down the *a* axis. Each of the Sb^{3+} cations possesses a stereochemically active lone pair of electrons.

Although the space group $P2_12_12_1$ in which this compound crystallizes is non-centrosymmetric but non-polar, there is approximate alignment of the lone pair of electrons on the individual Sb³⁺ cations parallel to the *b* axis. However, the [Sb₃S₇]⁵⁻ anions are packed with opposing directions of polarity (*i.e.* the lone-pairs on different anions are aligned in opposite directions). The S₃²⁻ anion is bent, with S–S bond distances of 2.091 (3) and 2.092 (3) Å, and an S–S–S bond angle of 113.34 (15)°. Although the polysulfide anions do stack in oriented columns parallel to the *a* axis, the columns are oriented in opposing directions with respect to one another, canceling any polarity.

The six crystallographically unique Eu^{2+} cations are found in a variety of coordination environments, as shown in Fig. 2. Atoms Eu1 and Eu2 are found in seven-coordinate monocapped trigonal prismatic environments, with Eu-S bond distances ranging from 2.984 (3) to 3.081 (3) Å, and 2.944 (3) to 3.209 (3) Å, respectively. Atom Eu3 is bound by eight

Figure 2

A depiction of the local environments of the six crystallographically unique Eu^{2+} cations in $\mathrm{Eu}_6\mathrm{Sb}_6\mathrm{S}_{17}$. 50% probability displacement ellipsoids are depicted.

sulfide anions, with bond distances ranging from 2.968 (2) to 3.235 (3) Å. The geometry around atom Eu3 is heavily distorted from being a bicapped trigonal prism, a square antiprism or a dodecahedron because two of the sulfide nearest neighbors are part of the polysulfide linkage, creating a very short edge on the polyhedron. Atoms Eu4, Eu5 and Eu6 are all in nine-coordinate geometries that are quite distorted from idealized tricapped trigonal prismatic symmetry because of the presence of a polysulfide linkage within their inner spheres. The Eu4–S, Eu5–S and Eu6–S bond distances range from 3.005 (3) to 3.382 (3) Å, 2.980 (2) to 3.208 (2) Å, and 2.988 (3) to 3.197 (3) Å, respectively. Bond-valence sum calculations provide values ranging from 1.87 to 2.10 for the Eu centers in $Eu_6Sb_6S_{17}$, which are consistent with Eu²⁺ in this compound (Brown & Altermatt, 1985; Brese & O'Keeffe, 1991). Measurements of the magnetic susceptibility show that the effective magnetic moment is $7.0~\mu_B/Eu,$ which is somewhat lower than the expected free-ion moment of 7.9 $\mu_{\rm B}$ for Eu²⁺ because of the presence of minor amounts of Sb₂S₃ impurities. An antiferromagnetic transition occurs at 3.2 K in the susceptibility curve. A packing diagram for the complete structure of $Eu_6Sb_6S_{17}$ is shown in Fig. 3. When the structure is viewed down the a axis, it becomes apparent that Eu₆Sb₆S₁₇ adopts a channel structure. These

inorganic papers

Figure 3

The three-dimensional channel structure of Eu₆Sb₆S₁₇ viewed down the a axis. Eu-S bonds have been omitted for clarity.

channels house the stereochemically active lone pair of electrons on the Sb³⁺ centers. A similar channel motif is also observed for $Eu_3Sb_4S_9$ (Lemoine *et al.*, 1981).

Experimental

Eu foil (99.9%, Alfa-Aesar), Sb (99.5%, Alfa-Aesar) and S (99.5%, Alfa-Aesar) were loaded in a fused-silica tube in a molar ratio of 3:5:12 with a total mass of 0.250 g. The following heating profile was used: $5 \text{ K} \text{min}^{-1}$ to 1123 K for 1 d, $5 \text{ K} \text{min}^{-1}$ to 1273 K for 7 d, 0.5 K min^{-1} to 873 K for 5 d, and 0.25 K min^{-1} to 295 K. The product consisted of small black block-shaped crystals of Eu₆Sb₆S₁₇ and acicular crystals of Sb₂S₃. The yields were generally low (about 10%), and were not improved by quenching the reactions. Semi-quantitative SEM/EDX analysis was performed on crystals of Eu₆Sb₆S₁₇ using a Jeol 840/Link Isis instrument. Eu, Sb and S percentages were calibrated against standards, and a Eu:Sb:S ratio of close to 1:1:2.8 (20 mol%:23 mol%:57 mol%) was found.

Crystal data

$Eu_6Sb_6S_{17}$	Mo $K\alpha$ radiation	
$M_r = 2187.28$	Cell parameters from 7062	
Orthorhombic, $P2_12_12_1$	reflections	
a = 8.236 (2) Å	$\theta = 1.6-28.3^{\circ}$	
b = 15.237 (3) Å	$\mu = 19.80 \text{ mm}^{-1}$	
c = 22.724 (5) Å	T = 193 (2) K	
$V = 2851.7 (11) \text{ Å}^3$	Prism, black	
Z = 4	$0.11 \times 0.08 \times 0.05 \text{ mm}$	
$D_x = 5.095 \text{ Mg m}^{-3}$		
Data collection		
Bruker SMART APEX	7062 independent reflections	
diffractometer	6058 reflections with $I > 2\sigma(I)$	
ω scans	$R_{\rm int} = 0.055$	
Absorption correction: numerical	$\theta_{\rm max} = 28.3^{\circ}$	
(SHELXTL; Sheldrick, 1997)	$h = -10 \rightarrow 10$	
$T_{\min} = 0.102, \ T_{\max} = 0.383$	$k = -20 \rightarrow 19$	

 $l = -30 \rightarrow 30$

 $T_{\min} = 0.102, \ T_{\max} = 0.383$ 29271 measured reflections

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.002$
$R[F^2 > 2\sigma(F^2)] = 0.031$	$\Delta \rho_{\rm max} = 1.41 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.062$	$\Delta \rho_{\rm min} = -1.23 \text{ e } \text{\AA}^{-3}$
S = 1.00	Extinction correction: SHELXTL
7062 reflections	Extinction coefficient: 0.000081 (7)
264 parameters	Absolute structure: Flack (1983),
$w = 1/[\sigma^2(F_0^2) + (0.0189P)^2]$	3084 Friedel pairs
where $P = (F_o^2 + 2F_c^2)/3$	Flack parameter: 0.699 (16)

Table 1 Selected geometric parameters (Å, °).

Eu1-S5 ⁱ	2.984 (3)	Eu5-S8	2.980 (2)
Eu1-S4	2.987 (3)	Eu5-S14	2.984 (3)
Eu1-S1	3.000 (3)	Eu5-S17 ^{vii}	3.027 (2)
Eu1-S14 ⁱⁱ	3.009 (3)	Eu5-S1 ^{viii}	3.039 (3)
$Eu1-S10^{ii}$	3.028 (3)	Eu5-S10	3.073 (3)
Eu1-S2	3.056 (3)	Eu5-S9	3.082 (2)
Eu1-S13 ⁱⁱⁱ	3.081 (3)	Eu5-S15	3.110 (3)
Eu1···Eu2 ⁱ	4.0983 (12)	Eu5-S12	3.168 (3)
Eu1···Eu5 ⁱⁱ	4.1297 (11)	Eu5-S16 ^{vii}	3.208 (2)
Eu1···Eu2	4.1394 (12)	Eu5···Eu6	4.0621 (12)
Eu1···Eu4 ⁱ	4.1683 (11)	Eu5· · · Eu1 ^{viii}	4.1296 (11)
Eu2-S11 ^{iv}	2.944 (3)	Eu6-S1 ^{ix}	2.988 (3)
Eu2-S4	2.962 (3)	Eu6-S14	3.017 (3)
Eu2-S5	2.981 (2)	Eu6-S9	3.035 (2)
Eu2-S14 ^{iv}	2.982 (3)	Eu6-S8vi	3.046 (2)
Eu2-S1	3.008 (3)	Eu6-S11	3.063 (3)
Eu2-S3	3.010 (3)	Eu6-S15 ^{vi}	3.095 (2)
Eu2-S12 ^v	3.209 (3)	Eu6-S17vii	3.101 (3)
Eu2···Eu1 ^{vi}	4.0983 (12)	Eu6-S13	3.167 (3)
Eu2···Eu6 ^{iv}	4.1127 (11)	Eu6-S16 ^{vi}	3.197 (3)
Eu2···Eu3	4,1743 (11)	Eu6···Eu2 ^{ix}	4.1127 (11)
Eu3-S9 ⁱ	2.968 (2)	Eu6···Eu3 ^{vi}	4.1587 (11)
Eu3-S5	3.005 (3)	Sb1-S1	2.449 (2)
Eu3-S4	3.015 (3)	Sb1-S2	2.507 (3)
Eu3-S6	3.023 (3)	$Sb1 - S12^{ii}$	2.664(3)
Eu3-S8	3.024(2)	Sb2-S3	2.426 (3)
Eu3-S17	3.051 (3)	Sb2-S4	2.464(2)
$Eu3-S15^{v}$	3.132 (3)	Sb2-S2	2.598 (3)
Eu3-S16	3.235 (3)	Sb3-S6	2.431 (3)
Eu3···Eu4	4.0614 (12)	Sb3-S5	2.471 (2)
$Eu3 \cdots Eu6^{i}$	4 1587 (11)	Sb3-87	2,587 (3)
$Eu3 \cdot \cdot \cdot Eu4^{i}$	4.1753 (12)	Sb4-S8	2.416(2)
$E_{114}-S4^{vi}$	3,005 (3)	Sb4-87	2,537(3)
Eu4-S5	3.009 (2)	Sb4-S10	2.644(3)
Eu4-58	3010(2)	Sb5-S11	2.436(3)
Eu4-89	3.044(2)	Sb5-S9	2,440(2)
$Eu4-S15^{vii}$	3,066 (3)	Sb5-S10	2.534(3)
Eu4-S7	3077(3)	Sb6-S13	2434(3)
Eu4-S17	3.098(3)	Sb6-S14	2.445(2)
$Eu4-S16^{vii}$	3157(3)	Sb6-S12	2520(3)
$Eu4-S13^{v}$	3382(3)	S15-S16	2.020(3) 2.091(3)
Eu1 = 515 Eu4 + Eu5	41417(11)	\$16-\$17	2.091(3)
Eu1 Eu3 $Eu4 Eu1^{vi}$	4 1683 (11)	510 517	2.072 (5)
Eur Eur			(-)
S1-Sb1-S2	91.74 (9)	S8-Sb4-S10	90.92 (9)
S1-Sb1-S12"	91.51 (9)	S7-Sb4-S10	95.27 (9)
\$2-\$b1-\$12"	96.50 (9)	S11-Sb5-S9	94.14 (9)
\$3-\$b2-\$4	96.62 (9)	S11-Sb5-S10	103.87 (8)
\$3-\$b2-\$2	93.86 (8)	\$9-\$b5-\$10	90.28 (10)
\$4-\$b2-\$2	93.15 (9)	\$13-\$b6-\$14	95.92 (9)
\$6-\$b3-\$5	94.92 (10)	\$13-\$b6-\$12	100.90 (9)
\$6-\$b3-\$7	94.70 (7)	\$14-\$b6-\$12	94.00 (9)
\$5-\$b3-\$7	92.21 (9)	\$15-\$16-\$17	113.34 (15)
S8-Sb4-S7	92.32 (9)		

Symmetry codes: (i) x - 1, y, z; (ii) $-x + \frac{1}{2}, -y - 1, z + \frac{1}{2}$; (iii) $x - \frac{3}{2}, -y - \frac{3}{2}, -z$; (iv) $\begin{array}{c} \begin{array}{c} 1, \\ 2, \\ -y \\ -1, \\ z \\ +1, \\ z \\ -y \\ -1, \\ z \\ -1,$ $\frac{3}{2}, -z;$ (viii)

Inspection of the atomic positions reveals that they come in symmetry-related pairs (e.g. Eu1-Eu2, Eu3-Eu4 and Eu5-Eu6) and the presence of additional pseudo-symmetry elements is confirmed by *PLATON* (Spek, 2003). The structure can be refined in space group *Pmnb* (alternative setting of the standard space group *Pmma*) to a residual of R(F) = 0.11 if a large number of systematic absence exceptions are excluded. The structure in *Pmnb* is identical to the structure in $P2_{1}2_{1}2_{1}$, except that the S_{3}^{2-} groups are in a disordered arrangement. We conclude, in agreement with Choi & Kanatzidis (2000), that the correct space group is indeed $P2_{1}2_{1}2_{1}$. The sole atom that breaks the mirror symmetry is S16. The crystal of Eu₆Sb₆S₁₇ which was examined proved to be a partial inversion twin. The highest peak and the deepest hole are located 0.98 and 1.77 Å from atoms Eu1 and S1, respectively.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT-Plus* (Bruker, 1999); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *XP* in *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Support for this work was provided by the US Department of Energy through grant DE-FG02–02ER45963.

References

- Aliev, O. M., Rustamov, P. G., Guseinov, G. G. & Guseinov M. S. (1978). Izv. Akad. Nauk SSSR Neorg. Mater. 14, 1346–1347.
- Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Bruker (1999). SAINT-Plus. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SMART. Version 5.611. Bruker AXS Inc., Madison, Wisconsin, USA.

- Carré, D., Guittard, M., Jaulmes, S., Julien-Pouzul, M., Lemoine, P., Laurelle, P. & Flahaut, J. (1985). J. Less Common Met. 110, 349–370.
- Chen, J. H. & Dorhout, P. K. (1997). J. Alloys Compd. 249, 199-205.
- Choi, K.-S., Hanko, J. A. & Kanatzidis, M. G. (1999). J. Solid State Chem. 147, 309–319.
- Choi, K.-S., Iordanidis, L., Chondroudis, K. & Kanatzidis, M. G. (1997). Inorg. Chem. 36, 3804–3805.
- Choi, K.-S. & Kanatzidis, M. G. (2000). Inorg. Chem. 39, 5655-5662.
- Chung, D.-Y., Iordanidis, L., Choi, K.-S. & Kanatzidis, M. G. (1998). Bull. Korean Chem. Soc. 19, 1283–1293.
- Cordier, G., Schwidetzky, C. & Schäfer, H. (1984). J. Solid State Chem. 54, 84– 88.
- Evenson, C. R. & Dorhout, P. K. (2001). Inorg. Chem. 40, 2884-2891.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gao, J.-Z., Nakai, I. & Nagashima, K. (1983). Bull. Chem. Soc. Jpn, 56, 2615– 2617.
- Gao, J.-Z., Nakai, I. & Nagashima, K. (1984). Bull. Chem. Soc. Jpn, 57, 875– 876.
- Godzhaev, E. M., Rustamov, P. G., Guseinov, M. S. & Aliev, O. M. (1978). Zh. Fiz. Khim. 52, 2424.
- Guseinov, G. G., Mamedov, F. K., Amiraslanov, I. R. & Mamedov, Kh. S. (1981). Kristallografiya, 26, 831–833.
- Harman, T. C. & Honig, J. M. (1967). Thermoelectric and Thermomagnetic Effects and Applications. New York: McGraw Hill.
- Iordanidis, L., Schindler, J. L., Kannewurf, C. R. & Kanatzidis, M. G. (1999). J. Solid State Chem. 143, 151–162.
- Kanatzidis, M. G. (1997). Curr. Opin. Solid State Mater. Sci. 2, 139–149.
- Lemoine, P., Carré, D. & Guittard, M. (1981). Acta Cryst. B37, 1281-1284.
- Orlandi, P., Meerschaut, A., Palvadeau, P. & Merlino, S. (2002). Eur. J. Mineral. 14, 599–606.
- Park, S. & Kim, S.-J. (2001). J. Solid State Chem. 161, 129-134.
- Schwidetzky, C. W. D. (1985). Thesis, Technische Hochschule Darmstadt, Germany.
- Sheldrick, G. M. (1997). *SHELXTL*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.